

REGIONAL LABORATORY

R.W.D, MUZFFARPUR

TEST RESULT OF CONCRETE CUBE

Name of Road: Ramdeo Ray Sirsi to Laheri Tola Sirsi under MMGS)

Name of Division :- R.W.D Works Division Pupy: Date of Collection/Receipt... 20.06.2020

Date of Test :-..23.06.2020 Name of Agency:-Shri Awadh Mithila Constn Pvt. Ltd. Agreement No:- 25/SBD/2020-91

Package No :-..M.M.G.S.Y.....

Ref: (PIU) A.E R.W.D Works Sub Div. NanpurLT No: 247/Enc. / DT. 26.05. 2020

SL. No	Test after	7 days	Test after 2	8 days	. 125 M.
Dt.of Concreting			25.05.20	25.05.20	25.05.20
Dt.Of Test		/	23.06.20	23.06.20	23.06.20
ID Mark			AM ₁	AM2	AM3
Area C.M²			225	225	225
Maximum Load KN		1	690.00	700.00	670.00
CrushingStrength Kg/CM ²			312.92	317.46	303.85
Remarks				_ M30 -	-

Remarks :- M30.

Memo No. 777 Date 2306 20

Copy To :- E.E R.W.D Works Divisions ... Pupxi...

R.W.D

Regional Laboratory

Muzaffarpur

व्हार्वपालक अभियन्ता ग्रामीण कार्य विभाग क्षेत्रीय प्रयोगशाला, मुजफ्फरपुर

REGIONAL LABORATORY R.W.D., MUZAFFARPUR

GRADATION TEST OF ... GSB. Gr. I. Construction of Road from Ramdev Ray Sirst to Laheri Tola Sirsi
Name of work:- under Nanpur Block under MMGSY.

Date Of Collection. 26:05.2020

Agreement No:-05/SBD/2020-21

Date of test 25:05:2020

Name of Divisoin:-R.W.D., Works Division .. P.upri. Name Of Agency Shree Awadh Mithila Construction Put. Ltd.

	Ref.(PIV) Vi	de L:No · 239/6	Enclosure/13	.05.2020 OF AE, RWD	, WSD - Nanpu	LY.	
I. 0.	Sieve N0. m.m.	Weight Retained (kg)	% Wt of Retained	Cumulative % Retained (kg)	% of passing (kg)	Required limit %	Remarks
1	2	3	4	5	6	7	8
\exists			<u>CH·70</u>	<u>M.</u>			
			Wt. of	Bample - 20.060	Rig.		
	75	NIL	NIL	NIL	100	100	A Section of the sect
	26.5	8.500	42.37	42.37	57.63	55-75	3
	4.75	5.705	28.44	70.81	29.19	10 - 30	, riv
	0.075	5.505	27.44	98.25	1.75	< 10	de
				Y			
		•.	-				

Copy forwarded to - Excutive Engineer R.W.D., Works Division Pupri.

4-113 636

TIME DIS 28.5.20

ग्रामीण कार्य विभाग क्षेत्रीय प्रयोगशाला, मुजपफरप्

MS TEST HOUSE

.....Substantial Testing for Quality Work NABL ACCREDITED & ISO 9001:2015 CERTIFIED LABORATORY (H.D. Office) Abhiyanta Nagar, Z-Sector Plot No.-09, Near R.J. Complex, Ashlana Nagar, Patna - 800025 (B.R. Office) Raj Kumar Ganj, Near Poor Home, Darbhanga Mobile No. +91-900-6069-267, 7903542027 Email: mstesthouse@gmail.com

TEST REPORT

Issued To:

Shree Awadh Mithila Construction Pvt. Ltd. Baruraj, Motipur, Muzaffarpur.

Description of Sample: Design Mix

Grade:- M-30

Sub: -Mix Design of concrete for the construction of Road and CD works with

Maintenance for Ramdev Ray Sirsi to Laheri Tola Sirsi Under MMGSY.

Ref.No.-, Dated: 20.04.2020

Report No: MSTH-2004200324 Date of Receipt: 20.04.2020

Date of Testing: 20.04.20-18.05.20

Date of Report: 18.05.2020

The method of concrete mix design consists of selection of optimum proportions of water, cement, fine & coarse aggregate and admixture of produce concrete of specified properties most economically. The proportion of concrete mix is obtained by experimentally evolved relationship between the factors in the choice of mix design. It provides reasonably accurate guide to arrive at optimum proportions of ingredients. The final mix proportions are obtained on the basis of trial mixes. The mix design has been carried out as per stipulation of India standards specification IS: 10262 guidelines keeping in view the recommended mix standard deviations and targeted mean strength. The Recommended mix proportions should be tested at site for their workability & strength before it is adopted.

1.	Design Stipulations:	
Α	Characteristic Compressive Strength of Concrete required in field after 28 days	30 N/mm ²
В	Target Strength at 28 days N/mm ²	38.25 N/mm ²
С	Maximum size of Aggregates	20 mm
D	Required Slump	75-100 mm
E	Degree of quality control	Medium
F	Type of Exposure	Moderate
2.	Test Data For The Materials Used	
A	Type of Cement	OPC 43 Grade (Birlagold)
В	Consistency, %	28.9
С	Initial Setting Time (Minutes)	147
D	Final Setting Time(Minutes)	246
E	Compressive Strength (3 days) MPa	28.8
F	Compressive Strength (7 days) MPa	38.2
G	Compressive Strength (28 days) MPa	51.2
н	Specific Gravity	3.15
1	Minimum Cement Content	320 Kg/m ³
1	Specific Gravity of Admixture	1.08
K	Type of Admixture	Sikament

Authorized Signatory

Sample as received in the Laboratory by Agency.

Result listed refer only to the tested sample & applicable parameters. Endorsement of product is neither inferred nor implied

Sample will destroyed after one month from the date of issue of test certificates unless otherwise specified.

MS TEST HOUSE

NABL ACCREDITED & ISO 9001:2015 CERTIFIED LABORATORY

(H.D. Office) Abhiyanta Nagar, Z-Sector Plot No.-09, Near R.J. Complex, Ashiana Nagar, Patna - 800025

(B.R. Office) Raj Kumar Ganj, Near Poor Home, Darbhanga Mobile No. +91-900-6069-267, 7903542027 Email: mstesthouse@gmail.com

TEST REPORT

		. /20 0 10 1		Mirzachowki
Α		ate (20mm & 10 mm)		Koilwar
В	Fine Aggregate			Koliwar
	Specific Gravity			2.60
Α	Coarse Aggreg			2.68
В	Fine Aggregate			2.59
C		% Coarse Aggregate (20mr	n)	15.3
5	Abrasion Value			
A	Coarse Aggreg			22.3
5	Water Absorpt	ion, %		
Α	Coarse Aggre	gate (20 mm)		0.37
В	Fine Aggregat	e		1.33
7.	Free Moisture	Content, %		
Α	Coarse Aggre	gate (20mm)		Nil
8.	Bulk Density,	Gm/Cc		
A	Coarse Aggre	gate (20mm)		1.48
В	Fine Aggrega	te		1.58
9.	Sieve Analysis			
(1)	Coarse Aggre	gate:		
IS: S	Sieve Size (mm)	Analysis of Aggregate coa	rse fraction % finer (%)	As Per IS: 383 For Graded Aggregate Of Nominal Size
		20mm	10mm	62:38
				02.00
	40.0	100	100	100
	20.0	96.6	100 100	
				100
	20.0	96.6	100	100
	20.0 12.5	96.6	100 100	100 98.5 - 42.9
	20.0 12.5 10.0	96.6 - 13.4	100 100 92.5	100 98.5 -
(ii)	20.0 12.5 10.0 4.75 2.36	96.6 - 13.4 1.4	100 100 92.5 11.2	100 98.5 - 42.9
(ii) 1	20.0 12.5 10.0 4.75 2.36	96.6 - 13.4 1.4	100 100 92.5 11.2 2.4	100 98.5 - 42.9
	20.0 12.5 10.0 4.75 2.36 Fine Aggrega	96.6 - 13.4 1.4 -	100 100 92.5 11.2 2.4 eentage Passing	100 98.5 - 42.9 5.1 - Cumulative percentage Finer as per IS 383-2016
	20.0 12.5 10.0 4.75 2.36 Fine Aggregs	96.6 - 13.4 1.4 - ate:	100 100 92.5 11.2 2.4 eentage Passing	100 98.5 - 42.9 5.1 - Cumulative percentage Finer as per IS 383-2016 Zone-III
	20.0 12.5 10.0 4.75 2.36 Fine Aggrega S : Sieve Size	96.6 - 13.4 1.4 - ate: Cumulative Perc	100 100 92.5 11.2 2.4 entage Passing	100 98.5 - 42.9 5.1 - Cumulative percentage Finer as per IS 383-2016 Zone-III 100 90-100
	20.0 12.5 10.0 4.75 2.36 Fine Aggregs S: Sieve Size 10.0 mm 4.75 mm	96.6 - 13.4 1.4 - ate: Cumulative Perc	100 100 92.5 11.2 2.4 entage Passing	100 98.5 - 42.9 5.1 - Cumulative percentage Finer as per IS 383-2016 Zone-III 100 90-100 85-100
	20.0 12.5 10.0 4.75 2.36 Fine Aggregs S : Sieve Size 10.0 mm 4.75 mm 2.36 mm	96.6 - 13.4 1.4 - ate: Cumulative Perconstruction 97 89 79	100 100 92.5 11.2 2.4 eentage Passing	100 98.5 - 42.9 5.1 - Cumulative percentage Finer as per IS 383-2016 Zone-III 100 90-100 85-100 75-100
	20.0 12.5 10.0 4.75 2.36 Fine Aggrega S: Sieve Size 10.0 mm 4.75 mm 2.36 mm	96.6 - 13.4 1.4 - ate: Cumulative Perc	100 100 92.5 11.2 2.4 eentage Passing	100 98.5 - 42.9 5.1 - Cumulative percentage Finer as per IS 383-2016 Zone-III 100 90-100 85-100

☐ Liability of Laboratory is limited to the invoiced amount only any dispute arising out of this report shall be subject of Bihar Jurisdiction only.

This Report is not to be reproduced wholly or in part and cannot be used as evidence in the court of law and should not be used in any advertising media without special permission in writing.

Authorized Signatory

Sample as received in the Laboratory by Agency.
 Result listed refer only to the tested sample & applicable parameters. Endorsement of product is neither inferred nor implied.
 Sample will destroyed after one month from the date of issue of test certificates unless otherwise specified.

MS TEST HOUSE

.....Substantial Testing for Quality Work NABL ACCREDITED & ISO 9001:2015 CERTIFIED LABORATORY (H.D. Office) Abhiyanta Nagar, Z-Sector Plot No.-09, Near R.J. Complex, Ashiana Nagar, Patna - 800025 (B.R. Office) Raj Kumar Ganj, Near Poor Home, Darbhanga Mobile No. +91-900-6069-267, 7903542027 Email: mstesthouse@gmail.com

TEST REPORT

Water Cem	ent ratio	Quantity Of Mater			0.47		
Water:							
Sand conte	nt:				0 Ltr./m³		
Coarse Aggr	and the second s				666 Kg/m³		
Cement Cor					8 Kg/m³		
Slump	itelit.				Kg/m ³		
	214/=!=L4\			10	0 mm		
11. Ratio (E							
Cem	ent Content		Water	Fine Aggregate	Coarse Aggregate		
	1		0.47	1.65	2.79		
Mix Propor	tion By Wei	ght Are As Follows	:				
	t Kg/m³	Water Kg/m³	Admixture (% by wt. of Cement), Kg/m³ (0.9) %	Fine Aggregate Kg/m³ (38%)	Total Coarse Aggregate (20mm) Kg/m³ (62%)		
Trial-1	414	202.0	3.31	653	1106		
Trial-2	409	197.0	3.27	658	1112		
Trial-3	404	192.0	.3.23	666	1128		

Mix Proportion B	y Weight Are As Follo	ows:		
Cement Kg/m ³	Water Kg/m ³	Admixture (% by wt. of Cement), Kg/m³ (0.9)%	Fine Aggregate Kg/m ³ (38%)	Total Coarse Aggregate (20mm) Kg/m³ (62%)
50	23.5	0.40	82.5	139.5

Authorized Signatory

 [○] Sample as received in the Laboratory by Agency.
 ○ Result listed refer only to the tested sample & applicable parameters. Endorsement of product is neither inferred nor implied.
 ○ Sample will destroyed after one month from the date of issue of test certificates unless otherwise specified.
 ○ Liability of Laboratory is limited to the invoiced amount only any dispute arising out of this report shall be subject of Bihar Jurisdiction only.
 ○ This Report is not to be reproduced wholly or in part and cannot be used as evidence in the court of law and should not be used in any advertising media without special permission in writing.

....Substantial Testing for Quality Work

NABL ACCREDITED & ISO 9001:2015 CERTIFIED LABORATORY (H.D. Office) Abhiyanta Nagar, Z-Sector Plot No.-09, Near R.J. Complex, Ashiana Nagar, Patna-800025

(B.R. Office) Raj Kumar Ganj, Near Poor Home, Darbhanga

Mobile no.: +91-900-6069-267, Email: - mstesthouse@gmail.com

TEST REPORT

12. A.	Compressive Strength (7 Days)	DOC-20.04.2020	DOT-27.04.2020	
C 11	2	Average Compressive Strength		
S No.	Compressive Strength (N/mm²)	(N/mm²)	(Kg/cm²)	
1.	23.9			
2.	24.2	24.0	240	
3.	24.0			
B. Compressive Strength (28 Days)		DOC-20.04.2020	DOT-18.05.2020	
		Average C	compressive Strength	
S No.	Compressive Strength (N/mm²)	(N/mm²)	(Kg/cm²)	
1.	39.1			
2.	38.5	39.3	393	
3.	40.3			

Remarks: -

- Trial-3 is recommended for the mix proportion at the Site for their Workability and Strength.
- This mix design has been done at saturated condition.
- Your material brought at site is dry or wet, than water can be decreased or increased according water Absorption.
- Tap Water of our lab has been used, if water not supply, water should be pure and clean in concrete mix As Per IS: 456-2000 & IS: 3025
- Admixture Used Sikament Brand.

Authorized Signatory

Page 4 of 4

